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Abstract. The magnetic excitations in the field induced ferromagnetic phase F3 of a NdCu2 single crystal
were investigated by means of inelastic neutron scattering experiments. A mean field model using the
random phase approximation in connection with anisotropic magnetic bilinear R-R (R denotes a rare
earth) exchange interactions is proposed to account for the observed dispersion. The relevance of this
model to the analysis of the magnetic ordering process in other RCu2 compounds is discussed.

PACS. 75.30.Et Exchange and superexchange interactions

1 Introduction

The magnetic structures of NdCu2 in zero field and for
magnetic fields parallel to the b axis of the orthorhom-
bic crystal have been the topic of extensive studies [1–3].
For the corresponding magnetic phase diagram and the
description of the different magnetic phases we refer the
reader to the given references. The investigation of the
magnetic excitations is an important dynamical counter-
part to the determination of the static magnetic struc-
ture, leading to conclusions about the magnetic ground
state and the detailed form of the magnetic interactions.
By measuring the field and temperature dependence of
the magnetic excitations it is possible to refine theoretical
models for the magnetic ordering process.

In NdCu2 the zero field phase AF1 consists of a com-
plicated stacking of 10 ferromagnetic bc planes in a direc-
tion leading to an excitation spectrum with 20 branches
within an energy range from 0.6 to 2.0 meV [4,5]. The
presently available resolution of neutron spectrometry,
however, is not sufficient to determine all branches unam-
biguously unless detailed theoretical predictions are avail-
able. For these reasons the magnetic excitations have been
measured in the field induced ferromagnetic state, where
only two branches appear that can be easily resolved by
experiment and that can be calculated very fast by an
analytical formula that can be used for a fit.

The paper is organized in the following way: In the
first section the details of the neutron scattering exper-

a e-mail: martin rotter@hotmail.com

iments will be described, then the results are presented
followed by a discussion of the symmetry of the magnetic
interactions and an outline of the method used to calcu-
late the magnetic excitations. A quantitative analysis of
the experimental data is performed, followed by a discus-
sion about its relevance to other RCu2 compounds in the
final section of the paper.

2 Experiments

The inelastic neutron scattering (INS) experiments have
been performed on a large NdCu2 single crystal (5×7.5×
5.2 mm3) that was also used for the magnetic structure
determination and is described elsewhere [2]. The major-
ity of the INS measurements was carried out on the IN12
triple-axis spectrometer at the Institut Laue-Langevin,
Grenoble, using vertical and horizontal magnetic fields of
3 T. Additional experiments have been performed on the
V2 triple-axis spectrometer at the BER2-reactor of the
Hahn-Meitner-Institut, Berlin, equipped with a horizon-
tal cryomagnet operated at 3 Tesla. Monochromator and
analyzer of both spectrometers were made of pyrolytic-
graphite (002) crystals. The IN12 spectrometer has been
run in constant-momentum-transfer (constant-Q) mode
with variable incident-neutron energy, bent monochro-
mator and flat analyzer. No filter has been used be-
cause higher order contaminations are filtered out by
the bent neutron guide. When working with vertical mag-
netic field ((010)-scattering plane) the scattered-neutron
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Fig. 1. Magnetic excitations of NdCu2 for Q = (0.35 0 2).
At this wave vector the minimal energy of the dispersion was
measured. The upper scan shows the shift of the magnetic ex-
citations when increasing the applied magnetic field.

energy was kept fixed at kf = 1.8 Å
−1

(6.7 meV). In hor-
izontal field ((001)-scattering plane) the final neutron en-
ergy has been varied between kf = 1.7 Å

−1
(6.0 meV)

and 2.1 Å
−1

(9.2 meV) in order to get access to some
Q-vectors in (h00)-direction. This variation was neces-
sary because of geometrical restrictions due to the con-
struction principle of the horizontal cryomagnet. Never-
theless, only a few points near the zone boundary could
be measured in (h10)-direction on IN12. The study of the
(h00)-direction could be completed at the V2 spectrom-
eter using a new horizontal cryomagnet with only two,
relatively small blind spots. This experiment was carried
out in constant-Q mode with fixed scattered-neutron en-
ergies of kf = 1.1 Å

−1
(2.5 meV), 1.4 Å

−1
(4.1 meV) and

1.55 Å
−1

(5.0 meV). A cooled Be-filter was placed in front
of the analyzer. Monochromator and analyzer have been
used in focusing geometry.

3 Results

The measurements have been carried out along the prin-
ciple symmetry directions (h00), (0k0) and (00l) at
T = 1.8 K and B = 3 T. Under these conditions the
lattice parameters have been determined to a = 4.385 Å,
b = 6.997 Å and c = 7.385 Å. Due to the two Nd3+ ions
per unit cell in the ferromagnetically ordered phase two
magnon branches are expected from the crystal field (CF)
ground state doublet. With magnon energies < 2 meV
these excitations are well separated from transitions to
the higher CF-levels [6].

As an example, Figure 1 shows a constant-Q spectrum
at the reciprocal lattice vector Q = (0.35 0 2). The
two excitations with energies 0.53 meV and 1.21 meV are
clearly separated. The magnetic origin of the measured
excitations has been checked by increasing the magnetic
field from 3 T to 4 T. Due to the Zeeman contribution
the energy of the two excitations shifts by about 0.2 meV
to 0.77 and 1.38 meV (see Fig. 1). Energy scans at other
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Fig. 2. Constant Q scans along (h 0 2) showing the crossing
of the two modes at (0.5 0 2).

points along the symmetry directions of the reciprocal lat-
tice revealed, that the scan shown in Figure 1 corresponds
to an absolute minimum of the dispersion. Note that the
position of the spin wave minimum does not coincide with
the ordering wave vector τ = (0.6 0 0) of the antiferro-
magnetic zero-field phase AF1.

Three subsequent scans along the (h 0 2) direction
are shown in Figure 2. At Q = (0.45 0 2) the lower exci-
tation has moved up to 0.83 meV, whereas the upper did
not change. The scans at (0.5 0 2) and (0.6 0 2) indi-
cate, that a stronger, nondispersive mode at about 1 meV
is crossed by a weak, dispersive mode at (0.5 0 2).

Energy scans performed along (h 0 1) revealed only
one, weakly dispersive branch above 1 meV. It is the same
branch, which is observable along (h 0 2), but there the
second branch appears as well.

To investigate the behavior of the two modes sepa-
rately, scattering experiments in the ab plane were per-
formed at the V2 spectrometer using a new horizontal
cryomagnet with large accessible angular range. For Q
in the reciprocal ab plane only one excitation can be
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Fig. 3. Constant Q scans at two equivalent positions in the
reciprocal ab plane of NdCu2 measured in the horizontal field
configuration. Only one excitation may be observed under
these conditions (see text).

measured, because the second excitation has no intensity
due to the structure factor. This property is due to the
fact, that the projection of the CeCu2 – type structure into
the ab plane can be described by a primitive rectangular
two dimensional lattice. Figure 3 exemplifies this situation
at the two equivalent positions (0.4 2 0) and (0.6 1 0).
It is instructive to compare the two excitations observed

along (h 0 2) to equivalent points along (h 1 0)
and (h 2 0): along (h 1 0) the strongly dispersive
mode can be measured, whereas along (h 2 0) only the
weakly dispersive excitation can be observed.

Unfortunately, even with the new horizontal cryomag-
net on the V2 spectrometer not all q values were accessible
(q = Q−τ with τ being a reciprocal lattice vector). How-
ever, the dispersive branch could clearly be followed from
the zone boundary at (0 1 0) up to (0.6 1 0). Crossings
of the two modes have been found at q = (0.2 0 0) and
q = (0.53 0 0).

The results of all scans performed along the symme-
try directions of the reciprocal lattice are summarized in
Figure 7 and will be discussed in comparison with the cal-
culated dispersion in Section 5. The energies of the two
modes at the Γ point have been determined at (0 0 2)
to 1.18 meV and 1.63 meV.

4 The MF-RPA model for magnetic
excitations

For the calculation of the magnetic excitations in systems
with low symmetry great care has to be taken about the
anisotropy of the magnetic interactions. In general there
are several sources of magnetic anisotropy: single ion and
two ions, the most investigated being single ion anisotropy
originating from crystal fields. The two ions anisotropy is
often considered to be of minor importance and therefore
neglected, i.e. an isotropic Heisenberg type of magnetic
exchange is assumed, especially for high symmetry com-
pounds where anisotropic exchange constants are partly
zero for reason of symmetry.

In the orthorhombic RCu2 compounds there is evi-
dence that the strong single ion anisotropy [7] alone cannot
explain the behavior of the magnetic excitations. The im-
portance of anisotropy in two ions exchange interactions
has been investigated in some cubic and hexagonal sys-
tems, see e.g. the case of TbP [8], RSb [9] and Pr [10]. In
Pr and TbP the anisotropy of bilinear exchange could be
demonstrated by a splitting of otherwise degenerate exci-
tations, in CeSb this anisotropy results in a soft mode at
another position than the ordering wave vector of the sys-
tem. The latter, outstanding feature was found also in the
present investigation on NdCu2 and strongly underlines
the presence of anisotropic exchange interactions. There
is also another, more quantitative argument for the im-
portance of anisotropic exchange in NdCu2, which due to
its length is presented in Appendix A.

After having commented the experimental evidence for
anisotropic exchange, the most general bilinear exchange
interaction allowed by symmetry will now be discussed.

The RCu2 compounds crystallize in the CeCu2 struc-
ture (space group Imma, D28

2h), which can be thought of as
an orthorhombic distortion of the hexagonal AlB2 struc-
ture [11] (space group P6mmm, D1

6h, note that LaCu2

crystallizes in this hexagonal structure). The orthorhom-
bic b axis corresponds to the hexagonal axis and the ac
plane to the hexagonal plane. Figure 4 shows the CeCu2

structure in a projection into the ac plane, so that this
correspondence can be seen clearly.

Table 1 gives the interaction tensor for the most gen-
eral case of 4 equivalent neighbors (all situated in one ab
plane) and, in addition to that, 3 more special cases. Any
two ions contribution to the exchange can be classified ac-
cording to the 4 cases in Table 1. E.g. for ions separated
only in c direction the exchange is diagonal (this follows
from the mirror symmetry of the ac and bc planes). For
all other types of neighbors exchange with off diagonal
elements is allowed by the orthorhombic symmetry.

In the following calculation all off-diagonal terms in
the exchange will be neglected. This results in short an-
alytical expressions for the magnetic excitation energies,
but it must be kept in mind, that this approach might
be too simple when comparing the calculation with the
experiment.

In addition to this simplification a further restric-
tion is used in the fitting of the exchange parameters
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Table 1. General bilinear magnetic interaction tensors between Nd3+ ions in NdCu2.

exchange tensor
=

J (ij) distance Ri −Rj0
B@
J aa J ab J ac

J ba J bb J bc

J ca J cb J cc

1
CA,

0
B@
J aa −J ab −J ac
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−J ca J cb J cc

1
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0
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0
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Fig. 4. Structure of NdCu2 projected into the ac plane. The
correspondence of the orthorhombic CeCu2 structure to the
hexagonal AlB2 structure is indicated. The big circles indicate
the Nd atoms at yNd = 0.25 (filled) and yNd = 0.75 (open),
the small circles indicate the Cu atoms at yCu = 0.0511 and
0.4489 (filled) and yCu = 0.5511,0.9489 (open).

to the experimental data. It is assumed that the mag-
netic exchange constants “do not see” the orthorhom-
bic distortion of the hexagonal lattice (compare Fig. 4)
and in addition the exchange is isotropic for magnetic
moments in the ac plane (i.e. J aa = J cc, J ac = 0).
This assumption is asserted also by the analysis of other
RCu2 compounds, for instance DyCu2. A high magnetic
field along the c direction of DyCu2 leads to a big hys-
teresis with a sudden increase of the saturation moment
to the value of 8.5 µB/f.u. [12]. Afterwards the mag-
netic and magneto elastic behavior of the c axis resem-
bles closely that of the original a axis (and vice versa).
Therefore this behavior is called “conversion of the easy
axis from a to c”. The magnetic phase diagram after
this axis conversion has been studied in detail for fields
along c [13] and agrees in all details (within 0.5 K and

0.1 T) with that of the original a axis. Preliminary neu-
tron scattering experiments in the converted state in-
dicate, that the ordering wave vector does not change
after the axis conversion [14]. This experimental evidence
underlines the assumption, that in RCu2 compounds the
exchange is isotropic in the ac plane within a few µeV.
Another case of interest in this respect is GdCu2: In
this compound the magnetic structure is compatible with
hexagonal symmetry, it is just the lattice which shows
an orthorhombic distortion. However, the lattice becomes
more hexagonal at the ordering temperature, as can be
seen by the change of the a/c ratio [15]. These results jus-
tify the assumption that the exchange is isotropic in the
ac plane.

Assuming hexagonal symmetry Figure 5 shows the dif-
ferent types of neighbors. The numbers indicate, which of
the exchange constants are related by orthorhombic sym-
metry only.

Bearing in mind the assumptions about the magnetic
exchange the detailed calculation of the low energy mag-
netic excitations in the field induced ferromagnetic phase
of NdCu2 is performed in the mean field (MF)-random
phase approximation (RPA). This method has the advan-
tage compared to linearized spin wave theory that it is
very easy to introduce the magnetic single ion anisotropy
caused by the crystal field [16]. The magnetic anisotropy,
both of single ion and two ions type, produces a gap in
the excitation spectra.

The starting point of the calculation is the following
Hamiltonian, consisting of a single ion and a two ions part:

H =
∑
i,lm

Bml O
m
l (Ji)− gJµB

∑
i

JiB−
1
2

∑
ij

Ji
=

J (ij)Jj .

(1)



M. Rotter et al.: Anisotropic magnetic exchange in orthorhombic RCu2 compounds (R = rare earth) 33

a

c

b
a

b

a

c

b

c
 6j 12n

12o

11

2 2

33

1

1 1

1

3

33

3

2

2 2

2

6l

a

c

b

1

2

33

4 4

1

1

2

2

33

3
3

4
4

44

a

c

b 1

2

33
2

4 4

1

55

66

a

c

b

4 4

1

55

66

4
4

1

55

66

1

1

2

2

2

2

3 3

33

12p 24r

a1

1

2e

b

c

Fig. 5. Different types of bilinear exchange interactions in RCu2 compounds assuming hexagonal symmetry of the exchange.
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=

J (Q) =

( =

J S(Q)
=

J D(Q) exp[iQ(r1 − r2)]
=

J
∗
D(Q) exp[−iQ(r1 − r2)]

=

J S(Q)

)
(13)

=

J S(Q) =
i,j same sublattice∑

j

=

J (ij) exp[−iQ(Ri −Rj)] (14)

=

JD(Q) =
i,j different sublattice∑

j

=

J (ij) exp[−iQ(Ri −Rj)]. (15)

In this expression the first term describes the crystal
field [17], the second the Zeeman energy and the third the
anisotropic bilinear exchange. At very low temperatures
the magnetic properties may be calculated by considering
only the ground state doublet |±〉 of the crystal field split
multiplet.

In [4] the crystal field parameters have been estimated
to B0

2 = 117 µeV, B2
2 = 134 µeV, B0

4 = 1.92 µeV,
B2

4 = 0.87 µeV, B4
4 = 1.69 µeV, B0

6 = 0.0476 µeV,
B2

6 = 0.0116 µeV, B4
6 = 0.0421 µeV and B6

6 = 0.366 µeV.
The corresponding ground state doublet is given by |±〉 =
−0.0487| ± 9/2〉 − 0.891| ∓ 7/2〉+ 0.373| ± 5/2〉+ 0.23| ∓
3/2〉− 0.111|± 1/2〉. However, the following analysis does
neither depend on any particular choice of crystal field
parameters nor on the form of the ground state.

The Hamiltonian (1) may be projected into the ground
state doublet yielding (for external fields B parallel to the
b axis, the coordinates are chosen such that a‖x,c‖y,b‖z)

H = E0 − gJµB

∑
i

(
M 0
0 −M

)
i

B

− 1
2

∑
ij

(
0 A
A 0

)
i

J aa(ij)
(

0 A
A 0

)
j

− 1
2

∑
ij

(
M 0
0 −M

)
i

J bb(ij)
(
M 0
0 −M

)
j

− 1
2

∑
ij

(
0 C
−C 0

)
i

J cc(ij)
(

0 C
−C 0

)
j (2)

A = 〈+|Ja|−〉 A∗ = A (3)

±M = 〈±|Jb|±〉 M∗ = M (4)
C = 〈+|Jc|−〉 C∗ = −C. (5)

A mean field (MF) is introduced and the splitting of the
ground state ∆ = E− − E+ is calculated selfconsistently
according to the following relations (taking into account
interdoublet mixing to second order in Beff as described
in [3] Eqs. (8, 9)).

Beff = B +
1

gJµB
J bb(q = 0)〈Jb〉 (6)

with the thermal expectation value defined as

〈Jb〉 = M+n+ +M−n− (7)

M± = ±M(1± αBeff) (8)

E± −E0 = ∓gJµBM(1± αBeff/2)Beff (9)

n± =
exp(−E±/kBT )

exp(−E+/kBT ) + exp(−E−/kBT )
· (10)

In this expression n± are the thermal population num-
bers of the two states |±〉 split by the effective field Beff .

The Fourier transform of the exchange tensor
=

J (ij) (i.e.
J bb(q = 0)) is defined in equation (A.3).

The frequency dependent single ion susceptibility
=
χ0 (ω) can be calculated for the MF ground state dou-
blet

=
χ0 (ω) =

 nA2∆
∆2−~2ω2 0 nAC~ω

∆2−~2ω2

0 χbb0 0
− nAC~ω
∆2−~2ω2 0 − nC2∆

∆2−~2ω2

 (11)

with the abbreviation n = 2(n− − n+) T→0−→ 2. χbb0 is zero
for ω 6= 0 and will therefore be neglected in the following
calculation.

A first estimate for the order of the excitation energies
are the singularities of this single ion susceptibility (i.e.
at ~ω = ∆). To describe the dispersion correctly the two-
atomic basis in this compound is taken into account and
RPA is performed (compare [16]) to calculate the suscep-
tibility

=
χ (Q, ω)

=
χ (Q, ω) =

(=
χ0 (ω) 0

0
=
χ0 (ω)

)−1

−
=

J (Q)

−1

. (12)

This is an equation of 6 × 6 matrices (for each of the
Nd atoms in the basis of the crystal there is a single ion
excitation matrix). The Fourier transform of the coupling
is given by

see equations (13, 14, 15) above.

In this expression the Ri are the position vectors of the
Nd3+ ions, (r1 − r2) designates the position of one Nd
sublattice with respect to the other Nd sublattice. Ac-
cording to the fluctuation dissipation theorem (see [16])
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the neutron cross-section is then given by summing over

the components of
=
χ
′′

(Q, ω) = (
=
χ (Q, ω)−

=
χ
†

(Q, ω))/2i

dσ
dE′dΩ

=
K

1− exp(−~ω/kBT )

∑
αβ... spatial indices

ss′... sublattice indices

× χ′′αβ
ss′

(Q, ω) exp[−iQ(rs − rs′)](δαβ − Q̂αQ̂β)

K =
kf

ki
N

1
π

(
~γe2

mc2

)2{1
2
gJF (Q)

}2

. (16)

In this expression ki and kf denote the wave vector of
the incoming and of the scattered neutron, respectively,
F (Q) is the magnetic form factor of Nd3+ in the dipole
approximation,N the number of scattering Nd atoms, γ =
gn/2~ the gyromagnetic ratio of the neutron and e2/mc2 =
2.82 fm is the classical electron radius.

The excitation energies can be calculated by analyz-
ing the poles of this cross-section. If the exchange is
assumed to be isotropic in the ac plane,

=

J S(Q) and
=

J D(Q) are diagonal and the aa and cc components are
equal. Using the notation JD(Q) = J aaD (Q) = J ccD (Q),
JS(Q) = J aaS (Q) = J ccS (Q) (but still assuming that
J aaS (Q) 6= J bbS (Q) and J aaD (Q) 6= J bbD (Q)) it is possible
to derive an analytical expression for the cross-section of
the magnetic excitations by combining equations (11–16):

dσ
dE′dΩ

=
2Kn

1− exp(−~ω/kBT )
=
(

f~2ω2 + g

~4(ω2
1 − ω2)(ω2

2 − ω2)

)
f = (1− Q̂2

a)A2(<(v) − s)− C2(1− Q̂2
c)(<(u)− r)

g = (1− Q̂2
a)A2(s2 − v?v)[r + <(u)]

− (1− Q̂2
c)C

2(r2 − u?u)[s+ <(v)]

r = ∆− nA2JS(Q)

s = ∆+ nC2JS(Q)

u = nA2JD(Q)

v = −nC2JD(Q). (17)

In this expression < and = denote real and imaginary
parts. The excitation energies ~ω1 and ~ω2 are given by

[~ω1
2
]2 = {∆− nA2[JS(Q)∓ |JD(Q)|]}

× {∆+ nC2[JS(Q)∓ |JD(Q)|]}. (18)

The corresponding intensities I1 and I2 can be calculated
from the residua of equation (17) – note that any factors
arising from the scattering geometry of a triple axis spec-
trometer are not included in the following expression:

I1
2

=
Kn

2~ω1
2
(1− exp(−~ω1

2
/kBT ))

(
1∓ <[JD(Q)]

|JD(Q)|

)
× {(1− Q̂2

a)A2(s± |v|)− (1− Q̂2
c)C

2(r ± |u|)}. (19)

Note that JS(Q) and JD(Q) transform under a transla-
tion about (1 1 0) as JS(Q + (1 1 0)) = JS(Q) and

JD(Q + (1 1 0)) = −JD(Q). Inserting this property into
equations (18, 19) one finds, that ~ω1(Q + (1 1 0)) =
~ω1(Q) and ~ω2(Q + (1 1 0)) = ~ω2(Q). Neglecting the
Q dependence of K for the moment (which is small due
to the magnetic form factor), we see, that the intensities
of the two excitations are exchanged by this translation,
i.e. I1(Q + (1 1 0)) = I2(Q) and I2(Q + (1 1 0)) = I1(Q).

If neutron experiments are performed in the reciprocal
ab plane, JD(Q) is real and according to equation (19)
either I1(Q) or I2(Q) is zero. Only one excitation can be
observed for a given wave vector Q, the other branch can
be measured at Q + (1 1 0).

However, such favorable experimental conditions can
be used only to measure the dispersion for l = 0. For
l 6= 0 the calculation always predicts two excitations.

5 Numerical analysis of the magnetic
excitations in NdCu2

For the transition matrix elements A and C defined in
equation (3) the values A = 2.00 and C = i1.6 have
been used. This is in reasonable agreement with the val-
ues deduced from magnetization at 8 K [7] (i.e. A = 2.1,
C = i1.5) and those derived from the published crys-
tal field parameters [4] (i.e. A = 2.0, C = i1.5). Scal-
ing of both of these parameters scales the amplitude of
the dispersion. Changing the relation of the values of A
to C affects the form of the dispersion: the steepness of
the low energy modes is increased while the high energy
modes become flatter if A and C become very different
(see Eq. (18)).

For the determination of ∆ and Beff the following
parameters have been used in equations (2–10): M = 2.27,
α = 0.03 T−1 and J bb(q = 0) = 24.6 µ eV (i.e. the same
as in [3]). Solving equations (2–10) selfconsistently with
respect to ∆ and Beff for B = 3T gives ∆ = 0.861 meV
and Beff = 4.50 T.

Using the above value for ∆, only an insufficient fit
of the observed dispersion could be achieved. To improve
the fit, ∆ was varied (yielding ∆ = 1.106 meV) and the
standard deviation (described below by Eq. (20)) could be
reduced to 20% of its former value. This indicates, that the
value of ∆ derived from the study of the magnetic phase
diagram [3] at 3 T external field is too low, suggesting that
J bb(q = 0) has to be modified. A consistent description
can be obtained with J bb(q = 0) = 44 µeV, Beff = 5.78 T
and ∆ = 1.106 meV. The new value for J bb(q = 0) can
be used as an input for refining the calculation of the ex-
change parameters J bb(ij) describing the magnetic phase
diagram (compare [3]).

The exchange parameters J aa(ij) = J cc(ij) have
been obtained by performing a least square fit of the cal-
culated to the measured dispersion using a simulated an-
nealing algorithm [18]. The following expression was min-
imized (E1(Q) and E2(Q) denote the measured modes,
s1(Q) and s2(Q) some statistical weighting factors and
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Fig. 6. First Brillouin zone of NdCu2, the Γ–point, the X–
point and the main symmetry directions are indicated.

Θ(x) the step function):

∑
Q∈{measured constant Q−scans}

s1(Q)[~ω1(Q)−E1(Q)]2

+ s2(Q)[~ω2(Q)−E2(Q)]2

+
i=1,2,Q∈{1st Brillouin zone}∑
|Q−(0.65 1 0)|>0.15 Å

−1
Θ(0.73 meV − ~ωi(Q))

× 1 +Θ(0.63 meV − ~ωi(Q))
2

[~ωi(Q)− 0.73 meV]2.

(20)

The second sum in equation (20) ensures, that the mini-
mum of the dispersion relation at q = (0.65 1 0) is a global
minimum. In this sum only q vectors in the first Brillouin
zone with positive h, k and l have been considered, be-
cause the excitation energies in the other parts of the zone
are related by symmetry (compare Eq. (18)). The error in
the fitted exchange parameters was estimated from the
experimental error in the measurement. Assuming an av-
erage experimental error of 0.15 meV leads to a variation
of (20) by about 0.14 meV2. This variation corresponds to
a variation of the fitting parameters within the range of
the error bars shown in Figure 8. Note that an error es-
timation obtained in this way does not take into account
the fact, that there might be several isolated solutions in
other regions of the parameter space. Figure 6 shows the
first Brillouin zone and the main symmetry directions of
the reciprocal lattice. The primed letters denote the ex-
tension of a symmetry line from the zone boundary to the
X–point. Note that for the related hexagonal lattice the

Brillouin zone would have the shape of a simple honey-
comb with Σ′/Σ = 1/2.

Using a set of fitted parameters and formula (18) the
excitation energies have been calculated. Figure 7 shows,
how the calculated excitation energies compare to the
experimental data. The dispersion along Λ shows a fast
oscillation with q indicating the long range of the
exchange. It was necessary to include the neighbor
r = (0, 0, 2c) (distance: 15 Å) into the model to ex-
plain this oscillating behavior (or alternatively assume
non hexagonal exchange resulting in a model with even
more parameters and different signs of parameters which
in hexagonal description should be equal). This high fre-
quency in Fourier space was also observed in the magnetic
excitations of PrCu2 [19]. InΣ direction the position of the
minimum in the dispersion and the mode crossing are in
excellent agreement with the available experimental data.
Also the two weakly dispersive modes along ∆ compare
well to the calculation.

In addition to the peak positions which are shown in
Figure 7, the intensities have been evaluated and com-
pared to the calculation (19). The contribution of the
polarization factors (1 − Q̂2

a) and (1 − Q̂2
c) dominates

and results in strong intensities for Q ‖ b. The rela-
tive intensity of the two modes is correctly described by
the model. For instance along the (h 0 1) direction
the intensity of the dispersive mode is only 10 percent
of the intensity of the other mode. Along (h 0 2)
both modes have about the same intensity (difference
less than 30 percent – compare the experimental data in
Fig. 2). A calculation assuming hexagonal symmetry of
the structure gives only one excitation. Comparing such a
calculation to the experiment showed, that whenever two
excitations are observed, the weaker excitation (i.e. the
upper mode along (0 0 l) and the strongly dispersive
mode along (h 0 1) and (h 0 2)) is expected to disap-
pear in hexagonal symmetry.

More accurate experimental data would be needed for
a comparison of small details in the variation of the in-
tensity, which are due to the oscillations in JS(Q) and
JD(Q).

Figure 8 shows the dependence of the fitted exchange
constants J aa = J cc on the interatomic distance. The
different types of neighbors are indicated by different
symbols. Because of the orthorhombic distortion of the
lattice the distance varies within some sets of exchange
constants, which have been kept equal in the fit pro-
cess because of the nearly hexagonal symmetry. The ex-
change constants of type 2e, indicated by the filled trian-
gles in Figure 8 appear rather large. If these constants
are set to a smaller value, the quality of the fit dete-
riorates dramatically. The large contribution might be
connected with the fact, that the parameters of type 2e
describe the exchange between Nd3+ ions situated in a
zig zag chain in b direction with very short distance,
whereas for all other types of interactions one or more
Cu atoms are situated in or near the connecting line.
The dashed line in Figure 8 represents the magnitude
of the classical dipole – dipole interaction, the solid line
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Fig. 7. Q-dependence of the magnetic excitations in the field induced ferromagnetic phase of NdCu2 at µ0H ‖ b = 3 T, the
lines show the dispersion as calculated by the MF-RPA model described in the text.

Fig. 8. Dependence of the fitted exchange constants on the
interatomic distance. The different types of neighbors are indi-
cated by different symbols. The full lines show the indirect ex-
change interaction as given by a free electron model described
in the text. The dashed lines show the magnitude of the classi-
cal dipolar exchange (i.e. +2(gJµB)2/R3 and −5(gJµB)2/2R3).

shows the indirect exchange interaction as given by a free
electron model [16]. The corresponding formulas are

J αβ(ij) = (gJµB)2
3(Rαi −Rαj )(Rβi −R

β
j )− |Ri −Rj|2

|Ri −Rj|5
(21)

for the classical dipole exchange and

J αβ(ij) = δαβ12πν|j0|2N̄ (ε̃F)

× sin(2kF|Ri −Rj |)− 2kF|Ri −Rj | cos(2kF|Ri −Rj|)
2kF|Ri −Rj|4

(22)

for the indirect exchange interaction in a simple isotropic
model (RKKY) [16]. In the above expression ν denotes
the number of conduction electrons/f.u. (i.e. ν = 5 =
3[Nd] + 2 × 1[Cu]), j0 the effective s-f exchange integral
(i.e. j0 ∼ (gJ − 1)0.1 eV), kF = 1.395 Å

−1
the Fermi

wave vector in a free electron model [20] and N̄ (ε̃F) the
density of electronic states/f.u. (i.e. ∼ 2.8 eV−1; this
value corresponds to the specific heat γ–value in YCu2

of 6.7 mJ/mol K2). To compare with the experimen-
tally determined exchange constants the indirect exchange
(RKKY) had to be scaled by a factor 0.06.

The classical dipolar exchange is comparable to the
indirect RKKY exchange only for neighbors up to 6 Å,
especially for next neighbors in the quasi – hexagonal ac
plane. It is obviously non diagonal (this fact is neglected
in the present analysis of the magnetic excitations) and
therefore might drive the formation of the noncollinear
magnetic structure observed in GdCu2 [15].

Figure 9 shows the Fourier transform of the exchange
interaction constants J bb(Q) (as determined by the mag-
netic phase diagram [3], compare equation (A.3)) and
J aa(Q) = J cc(Q) = JS(Q) + JD(Q) (as determined by
the magnetic excitations in the field induced ferromag-
netic phase F3). The difference of the dashed and full line



38 The European Physical Journal B

Fig. 9. Fourier transform of the fitted exchange interaction of
NdCu2 for moments in the quasi – hexagonal plane (J aa(Q) =
J cc(Q)) and for moments in b direction (J bb(Q)). Note that
the curve of J bb(Q) has been taken from the parameters used
to describe the phase diagram in [3] and should be modified at
Q = 0 according to the present analysis discussed in the text.

in (h 0 0) direction is a measure of the anisotropy of the
exchange. The wavelength of the oscillations with q is in-
versely related to the range of the exchange interactions,
indicating the importance of distant neighbor interactions
in NdCu2.

6 Magnetic order in other RCu2 compounds

Having analyzed the exchange in such detail for NdCu2

one question is obvious: Is it possible to interpret the or-
dering process of other RCu2 compounds (R = Ce, Pr,
Sm, Gd, Tb, Dy, Ho, Er, Tm) on the basis of these pa-
rameters?

The exchange parameters given in Figure 8 can be used
to make a prediction for the ordering temperature and the
magnetic structure of some other RCu2 compounds on the
basis of a MF theory. For simplicity we assume, that the
CF anisotropy of the rare earth moments can be described
by considering an anisotropic two level system (except
in the case of Gd, where CF effects can be neglected).
The anisotropy of this two level system is estimated by
the saturation value of the magnetic moment components
µsat
a,b,c = gJµBMa,b,c in the three orthorhombic axes (the

corresponding matrix elements of J, i.e. Ma,b,c have been
calculated from the available experimental data and are
listed in the third column of Table 2 for some RCu2 com-
pounds).

To calculate the ordering temperatures for different
possible magnetic structures the two ions exchange inter-
actions of the present analysis of NdCu2 are used. Assum-
ing an indirect exchange interaction,

=

J Spin (q) should be

comparable among the different rare earths [16].
=

J Spin (q)
is defined by

=

J (q) ≡ (gJ − 1)2
=

J Spin (q). (23)

Next we calculate the maximum of the Fourier trans-
form of the exchange interaction J bb(Q) and J aa(Q) =
J cc(Q).

For J aa(Q) = J cc(Q) the maximum of the
exchange corresponds to the minimum of the dis-
persion in NdCu2 at Q ∼ (2/3 1 0). From the
present analysis of the magnetic excitations we find
J aa(Q = (2/3 1 0)) = 79 µeV (using the parame-
ters shown in Fig. 8). This value is scaled according to
equation (23) for other RCu2 compounds and listed in
column 4 of Table 2. The maximum of J bb(Q) will be at
about Q ∼ (2/3 0 0), corresponding to the type of mag-
netic order found in NdCu2. From the Néel temperature
TN = 6.5 K we estimate J bb(Q = (2/3 0 0)) = 93 µeV (see
Fig. 9, [3]). Also this value is scaled according to equa-
tion (23) and listed in column 4 of Table 2 for other RCu2

compounds.
With this input it is now possible to calculate ordering

temperatures for moments in a or c direction

kBT
a
N = M2

aJ aa(Q = (2/3 1 0)) (24)

kBT
c
N = M2

cJ cc(Q = (2/3 1 0)) (25)

and for moments in b direction

kBT
b
N = M2

bJ bb(Q = (2/3 0 0)). (26)

Note that the ordering wave vector Q is different for
magnetic moments within the ac plane and parallel to
the b direction due to the different position of the max-
imum in J aa(Q) = J cc(Q) and J bb(Q), respectively.
Equations (24–26) are valid also for negligible CF
anisotropy (i.e. Ma ∼ Mb ∼ Mc) and can be used to
calculate the ordering temperatures TαN for the two types
of modulation. Naturally, only the largest value for the
ordering temperature will be of physical relevance (com-
pare [16]).

In Table 2 the calculated ordering temperatures for
the different moment directions and ordering wave vec-
tors are compared to experimental data. The calculation
of the ordering temperature was performed according to
equations (24–26), except for the case of Gd, where the
CF splitting is negligible. For Gd the well-known formula
3kBT

α
N = J(J + 1)J αα(Q) was used.

Of course, from such simple modeling a complete ex-
planation of all details cannot be expected. However, in
most cases the calculation is in reasonable agreement with
available experimental data.

Whenever T aN or T cN show the largest value, the pre-
dicted magnetic modulation vector Q is equal to (2/3 1 0)
(e.g. for TbCu2 and DyCu2 – see Tab. 2). For the com-
pounds where T bN has been calculated to be larger than T aN
and T cN, Q ∼ (2/3 0 0) is the predicted modulation vector.
In most cases this is true.

It is of interest to compare the exchange parameters
used in this paper to those obtained by Iwata et al. [21]
for TbCu2 and DyCu2: In Table 3 the reduced exchange
parameters of TbCu2 and DyCu2, which have been defined
in [21], are compared to those calculated from our set for
NdCu2 (shown in Fig. 8).
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Table 2. Calculated and experimentally observed ordering temperatures and wave vectors for some RCu2 compounds. The
saturation moment is estimated from magnetization experiments. It is used to calculate the ordering temperature for different
possible magnetic structures (i.e. (2/3 1 0) with a or c as the easy axis, (2/3 0 0) with b as the easy axis). If the observed structure
does not agree with the calculated one it is marked by a “6=”.

J gJ

Ma = A
Mb = M
Mc = C/i

J aa(2/3 1 0)
J bb(2/3 0 0)
J cc(2/3 1 0)

[µeV]

T aN
T bN
T cN
[K]

T exp
N [K] �

exp

CeCu2
5
2

6
7

1.9
0.6
1.3

[30]
21.7
25.5
21.7

0.9 6=
0.1
0.4

3.5
[31] (1 1 0)2

PrCu2 4 4
5

1.9
0.9
0.4

[32]
42.5
50.0
42.5

1.8
0.5
0.08

[33]3 -

NdCu2
9
2

8
11

2.0
2.5
1.6

[7]
79
93
79

3.7
6.7
2.3

6.5 [2] (0.618 0 0)

SmCu2
5
2

2
7

0.1
0.3
?

[34]
542
638
542

0.06
0.67

?
23 [6] ?

GdCu2
7
2 2 -

1062
1250
1062

65
76 6=

65

40
[15]

(2/3 1 0)
[15]

TbCu2 6 3
2

5.9
0.4
1.3

[32]
266
313
266

107
0.6
5.2

54
[25]

(2/3 1 0)
[24]

DyCu2
15
2

4
3

7.4
3.8
1.9

[32]
118
139
118

75
23
4.9

27
[13]

(2/3 1 0)
[26]

HoCu2 8 5
4

6.4
4.6
2.7

[32]
66.4
78.1
66.4

31.5
19.2
5.6

10
[25]

(2/3 1 0)
[27]4

ErCu2
15
2

6
5

0.4
7.1
0.9

[32]
42.5
50.0
42.5

0.08
29.2
0.40

12 [25] (0.615 0 0) [28]5

TmCu2 6 7
6

0.7
5.9
0.9

[29]
29.5
34.7
29.5

0.2
14.0
0.3

6 [25] (5/8 0 0) [29]6

2 Note that in CeCu2 the chemical and the magnetic unit cell is identical except for the fact that the magnetic moments of the
Ce ions on the two positions are coupled antiferromagnetically. This may either be described by a propagation vector (0 0 0)
and a 180◦ phase shift or by a propagation vector (1 1 0).
3 i.e. in PrCu2 the magnetic order is screened by quadrupolar order at 7.5 K.
4 for HoCu2 a propagation of (1/3 0 0) has been reported [27] for the high temperature phase between 7.4 and 10 K, this is
equivalent to an indexing with a propagation vector (2/3 1 0), the moments are aligned in a direction.
5 in ErCu2 a propagation of (0.385 0 0) was discussed in [28], however satellites have also been found at
(0.385 0 1) = (1 0 1)–(0.615 0 0).
6 the data of TmCu2 presented in [29] can be indexed according to (5/8 0 0).

In [21] the parameters of TbCu2 and DyCu2 have been
adjusted to reproduce the correct Néel temperature within
a mean field theory (compare Eq. (24); however, in [21] the
effect of all crystal field states has been considered). The
magnitude of the Néel temperature TN is determined by a
linear combination of these parameters, which is compared
at the bottom of Table 3. The value derived from the
present analysis of NdCu2 exceeds only slightly the values
for the other compounds.

Using the model described by [21] and the parameters
derived from the present analysis of NdCu2 (third col-

umn in Tab. 3), the critical field for the spin flip to the
ferromagnetic phase has been calculated for DyCu2 to
6.1 T. It exceeds the experimental value of 2.0 T [13,21].

7 Conclusion

The dispersion of the magnetic excitations in the field
induced ferromagnetic phase F3 of NdCu2 can be de-
scribed by a MF-RPA model with anisotropic magnetic
bilinear R-R exchange interactions. An attempt to analyze
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Table 3. Comparison of the exchange constants determined from the phase diagrams of TbCu2 and DyCu2 in [21] with the
model presented here for NdCu2.

TbCu2 [21] DyCu2 [21] NdCu2

J 1 [K] 2.65 2.09 2.47
J2 [K] −1.00 −1.26 −2.79
J3 [K] 3.16 2.78 3.49
J4 [K] −1.69 −1.67 −3.61
J1 − J2 + J3 − J4[K]

(∝ TN/(gJ − 1)2)
8.5 7.8 12.36

J0 = 2J1 + 2J2 + J3 + J4[K]
(∝ JSpin(q = 0))

4.77 2.77 −0.77

the magnetic ordering process in other RCu2 compounds
on the basis of this model shows:

1. The direction, into which the ordered magnetic mo-
ments point, is mainly determined by the crystal field,
because the CF interaction is much bigger than the
R-R exchange interaction.

2. The exchange interaction between neighbors in b di-
rection dominates, probably because the interatomic
distance between these R atoms is small and therefore
the magnetic interaction is not screened by any Cu
atoms.

3. Because of the anisotropy of the exchange the two R3+

ions in the primitive chemical unit cell may couple anti-
ferromagnetically, if the moments are aligned along the
a direction, but ferromagnetically, if the moments are
aligned along the b direction. Therefore, the ordering
wave vector is not the same for all RCu2 compounds.
It is approximately Q ∼ (2/3 1 0), if the easy axis is
the a or the c axis and Q ∼ (2/3 0 0) if b is the easy
axis.
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Appendix A

Here a more quantitative argument for the importance
of anisotropic exchange in NdCu2 will be presented. It is
based on the analysis of the magnetic structures of this
compound [3]. Figure 10 shows the free energy of the dif-
ferent magnetic structures in a magnetic field parallel to
the b-direction. For every magnetic structure the free en-
ergy at zero temperature is given by a line, the slope of
which is determined by the total magnetic moment of the

 f(B) [arb.units] T=0K

B

F1

F2

F3

Bc
AF1→F3

Bc1

Bc2

Bc3

AF1

Fig. 10. Model: Magnetic free energy f at zero temperature as
a function of the magnetic field B for the different structures
AF1, F1, F2, F3 (neglecting the contribution of higher CF
levels).

structure. The position of the line is determined by the
special moment arrangement of this structure [3]. There-
fore, if the magnetic structure and the transition fields
Bc1, Bc2 and Bc3 are known from experiment, the position
of all lines in Figure 10 can be determined (see [3]). Also
the value of the critical field BAF1−F3

c can be calculated,
although this critical field cannot be observed directly in
experiments. Thus the value of BAF1−F3

c has been deter-
mined to 1.965 T [3]. At this field the free energy of F3
equals the free energy of AF1 and this fact may be used to
make important conclusions about the magnetic exchange
in this compound.

We will assume that the exchange is isotropic and show
that this leads to contradictions with the experimentally
observed magnitude of the excitation energy within the
mean field (MF) – random phase approximation (RPA)
model.

The magnetic energy of the zero field phase AF1 (per
formula unit) can be calculated directly from the exchange
interaction

fAF1 = − 1
2N

∑
i,j

〈Ji〉AF1

=

J (ij)〈Jj〉AF1. (A.1)

In this expression the
=

J (ij) represents the exchange ten-
sors between Nd ion number i and j (at position Ri and
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Rj) and the < Ji >AF1 represent the thermal expectation
values of the angular momentum operator for the special
spin configuration of AF1 in a crystal of N Nd-atoms.

For q ⊥ c equation (A.1) can be Fourier transformed
to give

fAF1 = −1
2

∑
q⊥c∈1.BZ

〈J(−q)〉AF1

=

J (q)〈J(q)〉AF1 (A.2)

with the Fourier transform of the exchange and the spin
arrangement defined as

=

J (q) =
∑
j

=

J (ij) exp[−iq(Ri −Rj)] (A.3)

〈J(q)〉AF1 =
1
N

∑
j

〈Jj〉AF1 exp(−iqRj). (A.4)

At zero temperature the expectation values in
equation (A.3) (〈Jj〉AF1 = ±M b̂, the sign depend-
ing on j) can be evaluated from the magnetic structure
of AF1 (collinear antiferromagnetic stacking of fer-
romagnetic bc-planes with the moment arrangement
↑↑↓↓↑↓↓↑↑↓). Then equation (A.2) simply reads

fAF1 = −M2
{
J bb(τ )(0.647)2 + J bb(3τ )(0.247)2

+
1
2
J bb(5τ )(0.200)2

}
. (A.5)

Here τ =(0.6 0 0) designates the ordering wave vector of
AF1. The factor 1/2 for the higher harmonic 5τ results
from the fact that the zone boundaries have to be counted
only half in the expansion (A.2).

For the free energy of the ferromagnetic phase F3 the
total magnetic moment is not zero. In an external mag-
netic field B oriented parallel to the b-direction the Zee-
man energy has to be considered in addition to the ex-
change interaction, yielding:

fF3 = −gJµBMB −J bb(q = 0)M2/2. (A.6)

As stated above the free energies fAF1 and fF3 are equal
at BAF1−F3

c = 1.965 T. This leads to the relation

M2{J bb(τ )(0.647)2+J bb(3τ )(0.247)2+
1
2
J bb(5τ )(0.200)2}

= gJµBMBAF1−F3
c + J bb(q = 0)M2/2. (A.7)

To continue the investigation of the exchange, the value
of the Néel temperature TN = 6.5 K has to be explained.
In a MF theory this is given by (kB denotes Boltzmanns
constant)

kBTN = M2J bb(τ ). (A.8)

The small shift of τ with temperature [3] has been ne-
glected in this expression. The structure AF1 can only be
stable, if the Fourier transform of the exchange J bb(q)
has its maximum at q = τ (i.e. J bb(τ ) > J bb(3τ ),
J bb(τ ) > J bb(5τ )) [16]. Replacing in the left side of

equation (A.7) the higher harmonics J bb(3τ ) and J bb(5τ )
by J bb(τ ) = kBTN/M

2 gives the relation

2kBTN

{
(0.647)2 + (0.247)2 +

1
2

(0.200)2

}
>

2gJµBMBAF1−F3
c + J bb(q = 0)M2. (A.9)

By inserting reasonable values for M = 2.54 (this cor-
responds to the moment per Nd at 3 T external field –
compare [3]), TN = 6.5 K (i.e. J bb(τ ) = 0.093 meV) and
BAF1−F3

c = 1.965 T an upper limit for the sum of all cou-
pling parameters (i.e. J bb(q = 0)) can be deduced:

J bb(q = 0) < 0.0215 meV. (A.10)

This may be used to find an upper limit for the splitting
of the ground state doublet in F3 at 3 T, which in a MF-
theory is given by

∆ = 2gJµBMB + 2M2J bb(q = 0)
< 0.214 meV/T× 3T + 2× 0.139 meV = 0.920 meV.

(A.11)

Using equation (18) and specializing it for the case of
isotropic exchange (J aa = J bb = J cc = J ) allows to
estimate the excitation energy of the lower magnetic ex-
citation at the wave vector τ to (for the derivation of this
formula see the main text)

[~ω2(τ )]2 = (∆− 2A2J (τ ))(∆+ 2C2J (τ )). (A.12)

Putting in values for A and C (Ref. [7]: A = 2.1, C = 1.5i)
and estimating again J (τ ) from the Néel temperature
gives

[~ω2(τ )]2 = (∆− 0.76 meV))(∆− 0.39 meV). (A.13)

If we compare this to the estimation (A.11) (∆ <
0.92 meV), we can conclude that the soft mode excita-
tion ~ω2(τ ) has to lie below 0.08 meV, which is one order
of magnitude lower than the measured excitation energy
of about 1 meV. Therefore the assumption of isotropic ex-
change leads to fundamental contradictions with the ex-
periment.

Note that the numerical values in equations (A.7–
A.13) are based on the original analysis of the magnetic
phase diagram [3] and are in contrast to the new fitted
value of J bb(q = 0) = 0.044 meV and ∆ = 1.106 meV
described in the main text. The most convincing expla-
nation for this discrepancy is the limited validity of the
mean field theory near the ordering temperature. Usually
the mean field approach predicts an ordering tempera-
ture which is too big in comparison with the experiment.
Critical fluctuations reduce this ordering temperature
(compare for instance Monte-Carlo calculations on Ising
models [22,23]). To account for this effect a bigger value
for TN has to be inserted into equation (A.9). Taking for
example TN = 8 K leads to ∆ < 1.184 meV (instead
of (A.11)) and ~ω2(τ ) < 0.336 meV – but also these val-
ues rule out the possibility of isotropic exchange.



42 The European Physical Journal B

References

1. R.R. Arons, M. Loewenhaupt, Th. Reif, E. Gratz, J. Phys.-
Cond. 6, 6789 (1994).

2. M. Loewenhaupt, T. Reif, R. Arons, E. Gratz, M. Rotter,
B. Lebech, Z. Phys. B 96, 491 (1995).

3. M. Loewenhaupt, T. Reif, P. Svoboda, S. Wagner, M.
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